

DETECTION OF ROTA AND CORONA VIRUSES IN RAW MILK AND MILK PRODUCTS

Hamdi A. Mohamed^a, Adham M. Abdou^a, Ekbal M. Adel^a, Sayed Ahmed H. Salem^b, Mervat I.M. EL-Hassanine^c

^aFood Control Department, Faculty of Veterinary Medicine, Benha University, ^bVirology Department, Animal Health Research Institute Dokki, Giza, ^cAnimal Health Research Institute, Tanta branch

ABSTRACT

The spread of viral diseases in Egypt during the last decade had enormously impacted on the animal productivity, milk products and human public health. Therefore, the present study aimed for detection of bovine rota and corona viruses in raw milk and milk products (cheese and yoghurt). Raw milk samples (n=100), cheese samples (n=60) and yoghurt samples (n=50) were collected randomly from markets at El-Gharbia Governorate during the period from December 2011 till June 2012 for detection of rota and corona virus antigens by ELISA. Results showed that the antigen of rota and corona viruses could be detected in milk samples (15% and 5%, respectively). The antigen of rota and corona viral antigens in different types of cheese could be detected in 7 and 3 samples, respectively out of 60 samples. The antigen of rota and corona viruses in different types of samples. We could conclude that the raw milk and its products may play an important role in infecting human with rota and corona viruses and play an importance role in spreading of these viruses. Kareish cheese, soft white cheese and Balady yoghurt could not eliminate rota and corona viruses when infected milk is used due to insufficient heat treatment and bad hygienic measures. We can conclude that canned milk products free from rota and corona virus this indicate sufficient heat treatment and application of HCCP.

Keywords: Corona virus, Rota virus, milk and milk products.

(BVMJ 24(1): 79-85, 2013)

1. INTRODUCTION:

ilk is one of the complete food for human from birth to senility, as it contains all nutrients required for growth and maintenance of the body health. On the other hand, milk and its products are very suitable media for growth of all types of microorganisms. They subjected to contamination either directly or indirectly from different sources during the chain of production that make them, at the time unfit for human consumption or even a dangerous source of human infection with several types of microorganisms, including members of bacteria, viruses, moulds and yeasts [17]

Food of animal origin could be contaminated by exogenous and endogenous means. Virus involved in the exogenous contamination are specific pathogenic to man such as enteroviruses, rotavirus and coronavirus. Rota and corona viruses either singly or in combination are associated with diarrhea in neonatal calves [12]

The economic losses due to neonatal calf diarrhea have been estimated to 1.7 billion \$ worldwide Such losses are not only due to mortalities, but also reflect the veterinary costs and medication as well as subsequent chronic ill thrift and poor growth that represent a significant economic loss to dairy industry [9].

Bovine rota virus is one of nine genera belonging to the family Reoviridae, order Caudovirales the intact virion is 70 nm in diameter and the genome consists of 11 segments of double stranded RNA [15]. Rota virus is transmitted by the oral-fecal route. Clinical signs of rota virus infection range from mild to severe diarrhea results in depression, dehydration and occasionally death [16].

Bovine corona virus (BCV) is single stranded, positive sense, enveloped RNA virus. It is spherical about 120 to 150 nm in diameter [19]. BCV spread efficiently among cattle by fecal, oral and respiratory routes. It causes yellow watery diarrhea, mild depression, reluctance to stand and dehydration, while in cattle, it manifested by acute onset of winter dysentery, dark, liquid hemorrhagic diarrhoea, decreased milk production, with extension to respiratory tract affections [13].

The two viruses rota and corona were frequently identified in the faeces of diarrheic and apparently healthy calves and cattle from different localities in Egypt [7, 14]. The rota and corona viruses had a great effect on general health condition and reproduction in dairy herd and act as parameters measurable on herd level and to explore the association between antibody status and some herd characteristics [4].

Milk contaminated by rota and corona viruses through fecal contamination and due to bad hygienic measures in milking place. Infected milk and milk products act as vehicles for transmission of rota and corona viruses. The rota and corona viruses could survive in the contaminated milk after high temperature short time pasteurization (HTST), at71.7 °C for15second and induce public health hazard in dairy products such as yoghurt and cheese [22, 32].

Transmission of rota and corona viruses of because the ingestion occurs of contaminated unprocessed milk or dairy products. The diseases affect children among 6 years and the onset of the illness usually begins 3 days after exposure to the virus. Rotavirus usually starts with fever, upset stomach, and 1-3 days of vomiting, followed by 5-8 days of watery diarrhea, which has an extremely foul odor. Children can lose body fluids and electrolytes very rapidly with this disease. This is especially dangerous for children under 2 years of age [23]. Therefore, the present study based on virological

studying on raw milk and some dairy products which marketing in El-Gharbia governorate.

The present investigation was planned to study the following item:

1- Detection of bovine rota and corona viruses antigens in raw milk, cheese and yoghurt.

2. MATERIALS AND METHODS

1- Samples

a- Milk samples:

One hundred individual random milk samples were collected from markets of three districts in El-Gharbia Governorate (Cottour, El-Mehalla El-Kobra and Tanta) under hygienic condition in sterile tubes. The samples immediately placed in icebox and sent to the laboratory. The milk samples were stored at -20°C in the form of whole milk for detection of rota and corona viral antigens.

b- Cheese samples:

Sixty samples of different types of cheese (30 kariesh cheese, 20 soft white cheese and 10 canned white cheese) were collected from the markets of the same former mentioned in EL-Gharbai Governorate. The samples placed in an icebox and sent to the laboratory with a minimum of delay. The cheese samples were ground in a clean sterile mortar and diluted 1/4 times w/v with phosphate buffer saline (PBS). The suspension of each sample was centrifuged at 1000 rpm for 10 minutes and the supernatant fluid of samples was aspirated for detection of rota and corona viruses antigen.

c- Yoghurt samples:

Fifty samples of different types of Yoghurt (40 samples of balady yoghurt and 10 samples of canned yoghurt) were collected randomly from the markets of the same examined area. Samples placed in icebox and sent to the laboratory without minimum delay. The yoghurt samples were ground in a clean sterile mortar and diluted 1/4 times w/v with phosphate buffer solution (PBS). The suspension of each sample was centrifuged at 1000 rpm for 10 minutes, and the supernatant fluid was aspirated for detection of rota and corona viruses antigens.

2- Direct Enzyme-linked Immunosorbert

Assay (ELISA) for detection of rota and corona viral antigens according to Vollar et al. [33] supplied by Cypress Diagnostic Belgium.

Briefly: samples were diluted in diluting buffer and incubated on micro-plate for 60 minutes at room temperature. After that, the plate washed and incubated for 60 minutes with the conjugate, then the plate washed again and the [substrate working solution (H_2O_2) + chromogen tetramethylbenzidin (TMB)] was added. If viruses are present in the tested samples, the conjugate remains bound to the corresponding micro-wells and the enzyme catalyzes oxidation of the colorless chromogen to change into blue compound. Enzymatic reaction stopped by acidification.

3. RESULTS AND DISCUSSION

The results given in Table (1) showed that the antigen of rota and corona viruses in raw milk samples collected randomly from markets in El-Gharbia Governorate could be detected in 15% and 5% samples, respectively. The results pointed out that the milk contaminated by faecal contamination (exogenous mean) because the rota and corona viruses not shedding in milk from infected and carrier animals but the two viruses found in faeces of diarrheic neonatal calves or from apparent healthy calves and cattle. These results were in agreement with those reported formerly [1, 5, 20, 26]. The positive results obtained may be due to seasonal factors during collection of samples, and bad hygienic measures.

The data presented in Table 2 showed the comparison between rota virus antigen and corona virus antigen in the same examined raw milk samples and revealed that the level of infected milk samples by rota virus was higher in percentage than corona virus these results were supported by Panon et al. [24] and Erdogan et al. [12]. They concluded that rota virus is more stable than corona virus and also these results revealed that the milk samples may be contaminated either single or mixed by rota and corona viruses, these results were in agreement with earlier reports [1, 4, 6, 13].

Table 1 Detection of rota and corona viral antigens in milk samples collected randomly from markets at El-Gharbia Governorate in Egypt by ELISA.

Districts	Number of	Detection of viral antigen in Milk				
	Samples	Rota		Corona		
		+ve	-ve	+ve	-ve	
Couttor	25	4	21	2	23	
El-Mehalla El Kobra	50	9	41	3	47	
Tanta	25	2	23	-	25	
Total	100	15	85	5	95	

Table 2 Comparative detection	of rota and corona	viral antigens in the	milk samples by ELISA.
real real real real real real real real			r i j

Districts	Number of Examined Samples	Mixed infection	Rota	Corona
Couttor	25	2	4	2
El-Mehalla El Kobra	50	2	9	3
Tanta	25	-	2	-
Total	100	4	15	5

Results in Table (3) showed that, the incidence of rota virus and corona virus in different types of cheese collected randomly from markets in El Gharbia Governorate. The rotavirus was detected in kariesh cheese 4 samples out of 30 samples and in soft white cheese were detected in 2 samples out of 20

samples, but the incidence of rota virus in white canned cheese were zero. Corona virus was detected in kariesh cheese 2 out of 30 samples, and in soft white cheese, one out of 20 samples but not detected in white canned cheese. These data showed that presence of two viruses in kareish cheese and in soft white cheese is attributed to preparation of these types of cheese from infected unheated milk or may infected during manufacturing and selling of cheese which may induce public health hazard in children under 6 years when ingested infected milk and milk products. These were in agreement with Parashar et al [25]. The obtained results confirmed the importance of rota virus and corona virus in public health and the diarrhea by these viruses responsible for more than 2 million hospitalizations and 500,000 deaths annually [23, 24,31,34,35].

Table 3 Detection of rota and corona viral antigen in different types of cheese collected randomly from markets at El-Gharbia Governorate by ELISA.

Types of Cheese	Number of Examined	Detection of Viral Antigen in cheese			
	Samples	Rota		Corona	
		+ve	-ve	+ve	-ve
Kariesh cheese	30	5	25	2	28
White cheese from	20	2	18	1	19
unknown source					
Canned white cheese	10	-	10	-	10
Total	60	7	53	3	57

Results recorded in Table 4 revealed that the rota and corona viruses antigens could be detected in balady yoghurt 3 and zero out of 40 samples respectively, but rota and corona viruses antigens could not detected in canned yoghurt. It is evident from the obtained results that milk products (different types of cheese and different types of yoghurts) play an important role in spreading of diseases among animals and human and had public healthy important. Our conclusion revealed that rota and corona viruses persistence and survive through the manufacture of cheese and yoghurts when these products prepared from raw milk and also concluded that high thermal processing of milk during the manufacturing of canned cheese and yoghurts and also application of HACCP system is very important to obtain products free from any

disease these results were supported by Cliver [9], Berg [7] and Panon et al. [24]. The points for rota and corona viruses control reported by Zarzosa and Margueriti [36], Marquardt and Freiberg [23], Doaud et al. [11], Robert[28] who concluded that to control rota virus and corona virus, early detection was essential for effective control and required rapid and sensitive method as ELISA. Vaccination at late stage of pregnancy elevated level of serum and colostrum and milk antibodies against BRV and BCV [3, 29, 30]. Children could be vaccinated against rota virus and corona virus [27, 28]. Exhibition of marketing raw milk and heat treated milk must be applied by boiling or by ultra heat treatment before consumption [8, 18, 22, 32].

Table 4 Detection of rota and corona viral antigens in different types of Yoghurt at El-Gharbia Governorate by ELISA.

Types of Yoghurt	Number of Examined	Detection of Viral Antigen in Yoghurt				
	Samples	Rota		Corona		
		+ve	-ve	+ve	-ve	
Balady yoghurt	40	3	37	-	40	
Canned yoghurt	10	-	10	-	10	
Total	50	3	47	_	50	

CONCLUSION:

From the results obtained and according to

local conditions as well as our habits in

consuming milk, we can conclude that, the raw milk, Kariesh cheese, soft white cheese and balady yoghurt, exposed for sale at EL-Gharbia Governorate, may play an important

4. **REFERENCES**:

- Abd EL-Rahim, I.H.A. 1997. Rota and or corona virus infections in newborn buffalo calves in Upper Egypt. Fourth Cong. Egypt. Soci. Cattle Dis. 7th-9th Dec. Assuit, Egypt.
- Abou EL-Hassan, D., Salem, S. and Ayed, A. 1995. Neonatal calf diarrhea in Egypt. 3rd Sci Cong. Egypt. Soci. Cattle Dis. Assuit Egypt.
- 3. Alenius, S., Niskanen, R., Juntti, N. and Larsson, B. 1991. Bovine coronavirus as the causative agent of winter dysentery: serological evidence. *Acta. Vet. Scand.* 32:163-170.
- 4. Anna Ohlson, A., Emanuelson, U. Travén, M., and Alenius, S. 2010. The relationship between antibody status to bovine corona virus and bovine respiratory syncytial virus and disease incidence, reproduction and herd characteristics in dairy herds. *Acta Vet. Scand.* 52:37-43.
- Barboi, G. and Turcu, D. 1995. Diagnosis of rota and corona virus infection in calves. *Revesta - Romania- De medicina -Vet.* 5: 375-381
- 6. Barrett, J., 1986. Communicable disease associated with milk and dairy products in England and Wales. *J. Infect.* 2: 265-272.
- 7. Berg, M.G Van den 1986. Quality assurance for raw milk in the Netherlands. *Neth. Milk Dairy J.* 40: 69-84
- 8. Byomi, A.M., Herbst, W. and Paljer, J. 1996. Some viral agents associated with neonatal calves diarroea. *Assuit Vet. Med. J.* 35: 96-104.
- Cliver, O. 1973. Cheddar cheese as a vehicle for viruses. J. Dairy Sci., 56: 1329-1331.

role in infecting human with rota and corona viruses and play an importance role in spreading of these viruses

- Crouch, C.F.; Oliver, S. and Francis, M. J. 2001. Serological, colostral and milk responses of cows vaccinated with a single dose of a combined vaccine against rotavirus, corona virus and *Escherichia coli* k99. *Vet. Rec.* 149: 105-108.
- Doaud, A. M., Zeidan, S. M., Wassel, M. S., Gerrges, S. M., Effat EL-Sayed. 2003. Evaluation and field application of locally prepared combined inactivated Rota-Corona virus and E-coli K99 (Entero-3). Vaccine. 7th Sci Cong. Egypt. Soci. Cattle Dis. 7-9 Dec. Assuit, Egypt.
- Erdogan, H. M., Unver, A., Gunes, V. Citil, M. 2003. Frequency of rotavirus and coronavirus in neonatal calves in Kars district. *Kafkas Univ. Vet. Fak. Derg.* 9: 65-68.
- Faheem, S. M., Abd EL-Rahim, I. H. A., Nawal, M. Al., EL-Allawy, T. 2008. Incidence of viral enteritis among newborn calves in upper Egypt. 6th Sci. Cong. Egypt. Soci. Cattle Dis. 4-6 Nov. Assuit. Egypt.
- Hasoksuz, M., Kayar, A., Dodurka, T., Ilgaz, A. 2005. Detection of respirator and enteric shedding of bovine corona virus in cattle in Northwestern Turkey. *Acta. Vet. Hung.* 54: 137-146.
- 15. Hussein, A.H., Shalaby, M., Byomi, A., Nawwar, A., Reda,I. 2001. Bovine rotaviruses in Egypt: isolation of BRV g6 serotype from a field out break in buffaloes. Cong. Egypt. Soci. Cattle Dis. 6th Sci. Cong., 4 -6 Nov. Assuit, Egypt.
- 16. James, V. L. A., Lambden, P. R., Caul, E. O., Clark, I. N.1998. Enzymes linked immunosorbant assay based on recombinant human group C rotavirus inner capsid protein (VP6) to detect human group C rota virus. J. Clin. Microbial. 36: 3178- 3181.

Detection of Rota and Corona Viruses in Raw Milk and Milk Products

- 17. Janke, B. H. 2006. Protection of calves from viral diarrhea. Symposium on Neonatal Calf Diarrhoea. . 803- 810.
- Jay, J. M. 2000. Modern food microbiplogy, 6 Ed., Van Nan Nostrand Reinhold Company, New York.
- Kim; S.Y., Sweet; S., Slichter, D., Goldie, S. J. 2010. Health and economic impact of rotavirus vaccination in GAVI-eligible countries. *BMC Public Health*, 10: 253-277.
- 20. Lathorp, S. L., Wittum, T. E., Loerch, S. C., Perino, L. J., Saif, L. J. 2000. Antibody titers against bovine corona virus and shedding of virus via the respiratory tract in feedlot cattle. *Am. J. V. Res.* 61 : 1057-1061.
- 21. Lin, X. Q. O., Reilly, K. L., Storz, j., Purdy, W., Loan, R. W. 2000. Antibody responses to respiratory corona virus infection of cattle during shipping fever pathogenesis. *Arch. Virol.* 145: 2335-2349.
- Lu, C. P., Yao, H. C., Eichhorn, W. 1991. Corona virus as an agent of neonatal calf diarrhea in a Chinese dairy cattle farm. *J. Vet. Med.* 34: 177-198
- Marquardt, O. and Freiberg, B. 2000. Antigenic variation among foot-andmouth disease virus type A field isolates of 1997-1999 from Iran. *Vet. Microbiol.* 74: 377-386.
- 24. Panon,G., Tache, S., and Labie, C.1988. Respective stability of rotavirus and coronavirus in bovine milk. *Le Lait*. 68: 49-64
- 25. Parashar, U.D., Burton, A., Lanata, C., Boschi-Pinto, C., Shibuya, K., Steele, D., Birmingham, M., Glass, R.I. 2009. Global Mortality Associated with Rotavirus Disease among Children. J. Infect. Dis. 200 :S9-S15.
- Parashar, U.D., Hummelman, E.G., Bresee, J.S., Miller, M.A., Glass, R.I. 2003. Global illness and deaths caused by rotavirus disease in children. *Emerg.*

Infect. Dis. 9: 565-572.

- Parashar, U.D., Hummelman, E.G., Bresee, J.S., Miller, M.A., Glass, R.I. 2006. Global illness and deaths caused by rotavirus disease in children. *Bull World Health Organ.*, 81: 197-204
- Robert, F. Kahs 2007. Corona and rota viruses in vital diseases of cattle. 2nd Ed. Avenue, Ames, Iowa.
- 29. Sahna, K. C., Dagalp, S. B. and Ozgunluk, L. 2005. Shedding of bovine corona virus via faeces in cattle and calves. *Indian Vet. J.* 82 : 1032-1034.
- Soriano-Gabarró, M., Mrukowicz, J., Vesikari, T. and Verstraeten, T. 2007. Burden of rotavirus disease in European Union countries. *Pediatr. Infect. Dis. J.* 25: S7-S11.
- 31. Thomas, E., Besser, I., Clive,C.; Gay, I., James, F. 1998. Passive immunity to bovine rotavirus infection associated with transfer of serum antibody into the intestinal lumen. *Virol. J.* 45: 2238-2242.
- 32. Tiwari, A., VanLeeuwen, J.A., Dohoo, I.R.; Stryhn, H., Keefe, G.P., Haddad, J.P. 2005. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum on culling in dairy cattle in four Canadian provinces. *Vet. Microbiol.* 109:147-158.18.
- Vollar, A., Bidwell, D.E., Brtlett, A. 1976. Enzyme immunoassays in diagnostic medicine. Theory and practice. *Bull. World Health Organ.* 53: 55-65.
- Weiss, S.R. and Leibowitz, J.L. 2011. Coronavirus pathogenesis. *Adv. Virus Res.* 81: 85–164.
- 35. WHO 2008: World Health Statistics. WHO, Geneva.
- Zarzoso, R. J. and Marguerittle, J. A. 1999. Strategy for the control of neonatal calf diarrhea. *Vet. Argentina*, 16: 672-676.

عدد 24 (1)، يونيو 2013: 79-85

مجلة بنها للعلوم الطبية البيطرية

مدى تواجد فيروس الروتا والكورونا في اللبن الخام ومنتجات الإلبان

حمدى عبد السميع محمد¹، ادهم محمد عبده¹، ا قبال محمد عادل¹، سيد أحمد حسن سالم²، مرفت إبراهيم مصطفى الحسنين³ ¹الرقابة الصحية على الألبان-كلية الطب البيطري – جامعة بنها، ²قسم الفيرولوجي بمعهد بحوث صحة الحيوان – الدقي -جيزة، ²معهد بحوث صحة الحيوان -طنطا

الملخص العربى

تم تجميع 100 عينة من اللبن الخام من أسواق ثلاث مراكز فى محافظة الغربية من شهر ديسمبر 2011 إلى شهر يونيو 2012 للكشف عن وجود كلا من فيروس الروتا والكورونا بواسطة اختبار الإليزا المباشر. وقد أسفرت النتائج عن وجود فيروس الروتا بنسبة 15 % وفيروس الكورونا بنسبة 5% وكانت أعلى نسبة أصابة بالنسبة لفيروس الروتا فى مركز المحلة الكبرى وفيروس الكورونا في مركز قطور. وقد تم تجميع 60 عينة من الجين مقسمة بين الجبنة القريش وجبنة بنضاء غير معلومة المصدر وجبنة فى مركز قطور. وقد تم تجميع 60 عينة من الجين مقسمة بين الجبنة القريش وجبنة بنضاء غير معلومة المصدر وجبنة فى مركز قطور. وقد تم تجميع 60 عينة من الجين مقسمة بين الجبنة القريش وجبنة بنضاء غير معلومة المصدر وجبنة فى عبوات معقمة منتجة من مصانع كبرى. وثم فحصها للكشف عن وجود كلا من فيروس الروتا والكورونا بواسطة اختبار وجبنة فى عبوات معقمة منتجة من مصانع كبرى. وثم فحصها للكشف عن وجود كلا من فيروس الروتا والكورونا بواسطة اختبار وجبنة فى عبوات معقمة منتجة من مصانع كبرى. وثم فحصها للكشف عن وجود كلا من فيروس الروتا والكورونا بواسطة اختبار وجبنة فى عبوات معقمة منتجة من مصانع كبرى. وثم فحصها للكشف عن وجود كلا من فيروس الروتا والكورونا بواسطة اختبار وجبنة فى عبوات معقمة منتجة من مصانع كبرى. وثم فحصها للكشف عن وجود كلا من فيروس الروتا والكورونا بواسلة الجبنة التريش وفى الجبنة البيضاء الغير معلومة المصدر وبالنيزا المباشر واسفرت النتائج عن وجود فيروس الروتا والكورونا فى الجبنة القريش وفى الجبنة البيضاء الغير معلومة المصدر وبالنيزا المباشر واسفرت النتائج عن معوات معقمة دلت النتائج على خلوها تماماً من الفيروسات. وقد تم تجميع 50 عينة زبادى مقسمة بين زبادى بلدى وزبادى من مصانع كبرى للكشف عن فيرسا الروتا والكورونا بواسطة اختبار الإليزا المباشر. وقد أسفرت ألعلي على خلوها تماماً من الفيروسات. وقد تم تجميع 50 عينة زبادى مقسمة بين زبادى بلدى وزبادى من مصانع كبرى للكشف عن فيرسا الروتا والكورونا بواسطة اختبار الإليزا المباشر. وقد أسفرت النتائج عن وجود فيروس الروتا فى زبادى المارى البلدى وزبادى وربادى الروت فى زبادى ماملمانع الكبرى من الزبادى البلدى وزبادى المورد الروت الروت.

(مجلة بنها للعلوم الطبية البيطرية: عدد 24 (1)، يونيو 2013: 79-85)