

BIOCHEMICAL AND PATHOLOGICAL EFFECTS OF CLOSANTEL AND LEVAMISOL IN FEMALE RABBITS

Shadia A. Refat, Abo El -Fetouh, E.H.^a, Riham M. El-Rashidy ^b and Omaima M. Samay ^b Biochem., Histopathol ^a and Clin. Pathol. ^b Dept., Animal Health Research Institute (Zagazig, Sharkia, Egypt)

ABSTRACT

The effect of the anthelmintic drugs (closantel and levamisole) on biochemical, teratological and pathological changes was studied in female rabbits by using 15 pregnant female rabbits 8 months old and 15 male rabbit, 10 months old used for mating. Rabbit were divided into three equal groups (5 females and 5 males in each). 1st group left without treatment (control group), 2nd and 3rd groups were S/C injected with therapeutic dose of closantel and levamisole, respectively as one dose at zero day of pregnancy. Pregnant rabbits were kept under daily observation until the 28th day of pregnancy, afterwards, caesarian sections were performed to determine the effects of the tested drugs on foetal numbers, weight and length. Two blood samples were collected at 15th and 28th day of pregnancy for haematological and biochemical evaluation. Samples from liver and kidney were taken for histopathological study. Subcutaneous injection of closantel and levamisole at zero day of pregnancy induces insignificacant decrease in number, weight and length of feti. The hematological study revealed that closantel and levamisole induced insignificant decrease in erythrocyte count, haemoglobin and packed cell volume 15th and 28th days post injection. Closantel induced significant increase in leukocytes, eosinophils, monocytes. Levamisole induced significant elevation in count of leukocytes, neutrophils, lymphocytes. In the current work, closantel induce significant decrease in total protein and albumin. Pregnant rabbit treated with levamisole showed a significant increase in total proteins, albumin and globulin. Closantel induced histopathological changes mainfested by severe hydropic degeneration in hepatic cells. Renal tubules showed necrotic epithelial, hyperplasia of the glomerular tuft and hyaline casts were seen in the lumen of renal tubules in some cases specially at 15 days post-injection. Closentil induce severe destruction in the renal epithelia but levamisole induce hyperplasia of bile duct at 15 day post-treatment. Portal area infiltrated with eosinophils, round cells infiltration were seen between the renal tubules. It could be concluded closantel and levamisole have no effects on developing foeti, but still produce adverse effects on haemato-chemical picture.

KEY WORDS: Biochemical, Levamisole, Pathological, Rabbit

(BVMJ 22(2): 136-144, 2011)

1.INTRODUCTION

any drugs are capable of crossing the blood placental barrier, which has important toxicologic implications for the foetus. Only a few drugs have been shown to be completely nontoxic when given to pregnant dam. Unfortunately, teratogenic potential of the majority of many drugs is unknown and, consequently, they are

avoided during pregnancy [1]. Closantel is long acting broad spectrum antiparasitic salicylanilide derivatives [28]. It has a persistent anthelmintic activity against nematodes, cestodes and liver flukes for several weeks [12, 23] for its strong binding to plasma protein and prolonged plasma half-life [27]. Closantel have long terminal half-lifes (16.6 days)

[30]. Levamisole is widely used for control of gastrointestinal parasites in many animal species due to its broad spectrum action [8]. It is anthelmintic agent acting as a full agonist of the nicotinic receptor of nematode muscle Levamisole [9]. act as immunostimulant agent [25]. Its immunostimulant effect may be related to activation and proliferation, augmentation of monocyte macrophage activity and an increase in neutrophil mobility. adherence, chemotaxis [34]. Levamisole has no cytotoxic effects [36].

The objective of present study was to evaluate the effect of closantel and levamisole on the pregnant female rabbits and their developing foeti as well as histopathological study.

2. MATERIALS AND METHODS

2.1. *Drug*

2.1.1. *Closantel* (Flukiver®) is developed by Janseen (UVEDCo) Uinited Veterinary Drug Industrial Company Limited. It is obtained in liquid form in 5% of 100 ml solution.

2.1.2. *Levamisole HCL* (Levamisole)^R injectable solution 7.5% obtained from CID Co., Egypt.

2.2. Animals:

The present study was carried out on 15 female rabbits, 8 months old, weighing 2.5-3kg and 15 male rabbits, 10 months old, weighing 3.25-3.5kg used for mating were obtained from a private rabbits farm in Sharkia Province. Rabbits were housed under hygienic conditions,

2.3. Experimental design:

Female rabbits were paired with males in a separate cage, mating was observed and considered as zero day of pregnancy, pregnancy confirmed by the presence of sperms in vaginal smears. Pregnant rabbits were divided into 3 equal groups.1st group was non treated (control group). 2nd and 3rd groups were injected S/C once at zero day of gestation with therapeutic dose (10 mg/kg b.wt. and 2.5mg/kg.b.wt.) closantel and levamisole HCL respectively (according to pamphlet of the manufacturing company). Pregnant rabbits were kept under daily observation 28th day of pregnancy, the caesarian sections afterwards. performed to determine the effects of tested drugs on foetal weight, length and number.

2.4. Blood sample

At 15th and 28thdays post injection 2 blood samples were collected from each animal, 1st sample was collected in a tube **EDTA** for estimation erythrogram and leukogram [19], sample was collected for obtaining clear for estimation aminotransferases (AST-ALT) enzymes [33] alkaline phosphatase [21], total protein [10], albumin (11) globulin by subtraction of albumin from total protein, urea [6], creatinine [17] and total bilirubin [20].

2.5. *Histopathological studies*

Specimen from liver and kidney were fixed in 10% formalin buffer and embedded in paraffin. Sections of 5 microns thickness were prepared, stained by haematoxylin and eosin stain and used for histopathological examination [3].

2.6. Statistical analysis:

The obtained data were statistically analyzed according to Petrie and Watson [32].

3. RESULTS

Closantel and levamisole given at zero day of pregnancy induced insignificant decrease in numbers, weight and length

feti (Table, 1). Closantel levamisole induced insignificant decrease in erythrocytic count, hemoglobin content and packed cell volume. Closantel induced leukocytosis, eosinophilia, monocytosis and insignificant decrease in neutrophils, lymphocytes basophils count at 15th and 28th days post injection but induced levamisole leukocytosis, neutrophilia, lymphocytosis and insignificant decrease in esinophils, basophils and monocytes (Tables 2& 3). Our result showed that, closantel induced significant elevation in AST, AT, alkaline phosphates, urea, creatinine, bilirubin and a significant decrease in total protein and albumin but globulin was insignificantly decreased at 15th and 28th days post injection. Pregnant rabbit with levamisole injected showed significant increase in AST. ALT. alkaline phosphatase, urea, total proteins, globulin and insignificant increase in creatinine but total bilirubin was insignificantly decreased at 15th and 28th days post injection (Tables 4& 5). The hepatic cells showed hydropic degeneration and fatty change at 15th days post closantel injection (Fig. 1). Renal tubules showed necrotic epithelia, hyperplasia of the glomerular tuft with epithelial and hyaline casts were seen in the lumen of renal tubules (Fig. 2).

The hepatic tissue showed hyperplasia of the bile duct at 15th day post levamisole injection (Fig. 3). The portal area was infiltrated with eosinophils, round cells were seen between the renal tubules and around the blood vessels at 15th day post treatment (Fig. 4).

The liver appears nearly normal at 28th day post treatment. In some cases closentel induce severe hydropic degeneration in hepatic cells (Figs. 5 & 6) and thickening in hepatic capsule (Fig. 7).

Table 1 Morphological changes in foeti obtained from dam rabbits treated with closantel or levamisole as one shot at zero days of gestation (n=5)

Group	No of feti	Fetal body weight (gm)	Fetal Length (cm)
Control	9.03±0.97	32.12±0.22	12.23±.63
closantel	8.32±1.56	30.08±0.32	10.12±0.54
Levamisole	8.74 ± 0.89	31.14±0.48	11.08±0.60

Table 2 Erythrogram rabbits treated with closantel or levamisole (n=5)

rable 2 Erythrogram rabbits treated with closumer of revamisore (n=5)						
Group		RBC $(10^6/\text{ mm}^3)$	Hb (Gm %)	PCV (%)		
Contro	1	5.63 ± 0.84	11.03 ± 0.73	31.94± 1.61		
G2	15day	5.21 ± 0.64	10.63 ± 0.52	30.05 ± 1.58		
	28day	5.53 ± 0.85	10.81 ± 0.73	30.22 ± 1.86		
G3	15day	5.47 ± 0.52	10.91 ± 0.97	31.07 ± 1.83		
	28 day	5.51 ± 0.89	11.21 ± 0.84	31.86 ± 1.93		

Table 3 Leukogram rabbits treated with closantel or levamisole.(n=5)

Group		Absolute differential count(10 ³ /cmm)					
		$TLC (10^3/mm^3)$	N	L	E	В	M
G1		10.82±0.62	4.09±0.35	5.48±0.72	0.36±0.08	0.22±0.05	0.57±0.14
G2	15 day	13.00±0.30**	3.99 ± 0.4	5.42 ± 0.39	1.05±0.15**	0.18 ± 0.04	1.26±0.25**
	28 day	13.06±0.61*	3.94 ± 0.67	5.54 ± 0.26	1.52±0.26**	0.19 ± 0.03	1.87±0.32**
G3	15 day	12.78±0.59*	4.92±0.13*	7.14±0.15*	0.19 ± 0.04	0.18 ± 0.04	0.35 ± 0.08
	28 day	11.34±0.74	4.52±0.92	5.96±0.38	0.21 ± 0.05	0.15±0.03	0.45 ± 0.10

p < 0.05 and** p < 0.01

Table 4 Liver and kidney function of rabbits treated with closantel or levamisole (n=5)

	Group Liver function		Kidney function		T.bilirubin(mg/dl)		
		AST(U/L)	ALT (U/L)	Al.ph.(U/L)	Urea (mg/dl)	Creatinine(mg/dl)	
G1		35.3±1.13	53.36±2.06	22.34±1.2	6.02±0.39	2.05±0.42	0.67±0.11
G2	15day	43.2±1.62**	61.24±1.86**	29.89±1.04**	8.07±0.33**	4.70±0.93*	1.23±0.21*
U2	28day	40.1±1.15*	57.51±1.10*	26.92±1.12*	7.64±0.42*	3.82±0.71*	0.99±0.10*
G3	15day	41.3±1.82**	60.17±1.52**	26.61±1.13*	6.36±0.21*	3.53 ± 0.59	0.56 ± 0.13
	28day	38.9±1.07*	58.75±1.17*	24.17±1.42	6.08 ± 0.85	2.12 ± 0.29	0.73 ± 0.16

*p < 0.05 and** p < 0.01

Table 5 Protein profile of rabbits treated with closantel or levamisole (n=5)

Group		T.P. (gm/dl)	Albumin (gm/dl)	Globulin (gm/dl)	A/G ratio
G1		6.02±0.33	3.38±0.16	2.64 ± 0.18	1.28±0.30
G2	15 day	4.77±0.34*	2.22±0.44*	2.55±0.31	0.87 ± 0.17
	28 day	5.19±0.19*	2.75±0.15*	2.44 ± 0.27	1.16±0.15
G3	15 day	7.36±0.42*	2.73±0.19*	4.64 ±0.51**	0.59 ± 0.14
	28 day	6.98±0.15*	3.09 ± 0.26	3.89 ± 0.60	0.79 ± 0.19

4. DISCUSSION

The present study illustrated that female rabbits injected with therapeutic dose of closantel and levamisole at zero day of pregnancy revealed insignificant decrease in number, weight and length of feti when compared with control group.

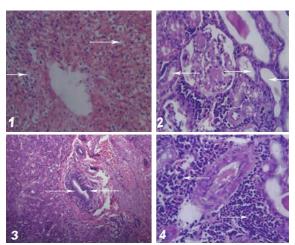
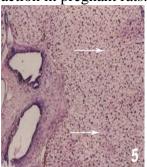



Fig. 1 Liver of rabbits injected with closantel showed hydropic degeneration and fatty changes (arrows) at 15th day post treatment. H&E., X 130. Fig. 2 Kidney of rabbits injected with closantel showed necrosis in the epithelial lining of the renal tubules and hyaline casts in the lumen (arrows) at 15th day post treatment. H&E., X 130. Fig. 3 Liver of rabbits injected with levamisole show hyperplasia of the bile duct (arrows) at 15th days post treatment H&E.X130. Fig. 4 Kidney of rabbits injected with levamisole showed round cells infiltration between the renal tubule (arrows) at 15th day post treatment. H&E., X 130.

The previous results are in accordance with the finding of [39] who found that closantel induced insignificant effects in embryo of rabbits. Our data clearly fit with those obtained previously by [24] stated that closantel had no teratogenic action in pregnant rats.

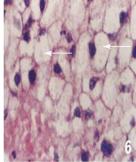


Fig. 5 Liver of rabbits injected with closantel showed severe hydropic degeneration in hepatic cells (arrows) at 15th days post treatment. H & E., X 130. Fig. 6 Liver of rabbits injected with closantel showed sever hydropic degeneration in hepatic cells (arrows) at 15th day post treatment (by high power) H & E., X 520

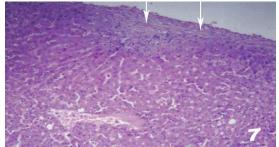


Fig. 7 Liver of rabbits injected closantel showed thickening of hepatic capsule (arrows) at 15th day post treatment. H & E., X 130

Keeping with this line previously it was stated that closantel induced teratogenic effects in pregnant ewes [5]. Teratogenic effects of a given drug could be predicted if the drug can successfully cross the blood placental barrier [29] and/or inhibit protein synthesis [38]. In support of the previous assumption, is the fact that closantel or its related metabolite not cross the blood placental barrier as its molecular weight is 662.82 [2]. Also, it has been stated that drugs with molecular weight of less than 600 do readily cross the placenta [15]. S/C injection of levamisole to ewes during pregnancy was found to have no significant effect in fetal weight [4]. These results were supported by [35] they stated that levamisole induce insignificant effect in average fetal size in rats. Levamisole do not have any teratogenic effects [22].

The present work revealed that, healthy rabbit injected with closantel levamisole showed insignificant decrease in erythrocytic count, hemoglobin and packed cell volume. The previous results are in accordance [37] they found that closantel induced insignificant decrease in erythrocytic count, haemoglobin and packed cell volume in rabbit. Our results were in agreement with result recorded [31] who stated that other salicylanilide derivertive (rafoxanide) induce insignificant decrease in erythrocytic count haemoglobin content and packed cell volume Same results was recorded [18] stated that levamisole induced insignificant decrease in erythrogram in sheep.

The obtained results revealed leukocytosis, eosinophilia, monocytosis coupled with insignificant decrease in neutrophils, lymphocytes and basophils counts at 15thand 28thday post closantel injection in rabbits. Levamisole induced leukocytosis, neutrophilia, lymphocytosis and insignificant decrease in esinophils, basophils and monocytes in the same

period. Close similarity was between this finding and those obtained by [2] who reported that closantel induced significant increase in count of leukocytes, eosinophils total monocytes with insignificant decrease in lymphocytes. The change in blood picture might be due to the high concentration of closantel residues in body for 42 days [16]. Our results were also similar to that reported by [31] who salicylanilid mentioned that other derivative (rafoxanide) induce significant increase in leukocytic count. Levamisole induced insignificant increase in count of leukocytes, neutrophils, lymphocytes in rabbits [26]. Elevation in leukocyte post treatment with levamisole was supported by [40] mentioned that levamisole induced leukocytosis in dairy cows and this elevation may be due to increase in lymphocytes and monocytes.

In the present experiment, a significant decrease in serum total protein, albumin and insignificant decrease in globulin in rabbit at 15th & 28th days post closantel injection was recorded. Meanwhile, levamisole induce significant elevation in serum total protein, albumin and globulin in rabbits. Same effect was obtained by [2], they stated that closantel induce a decline in total protein and albumin. These obtained results nearly agree with those observed by [34] who found an increase in total protein following levamisole treatment. Also, [18] found that levamisole caused an increase in immunoglobulin and immunity of the animals due to increase in globulin. The detected hypoprotinemia in the rabbit treated with closantel are supported by [41] said that closantel induce significant decrease in total protein, albumin and insignificant decrease in globulin in rabbits. Decreased protein and albumin may be parallel to the result recorded by [7]. They attributed hypoalbuminemia to the decrease in albumin synthesis due to

damage of liver parenchyma as a result to toxic effect of the drug. The effects of levamisol in protein profile are ascribed to its immunostimulant effect. These results are clearly reinforced by those obtained by [18] who found that levamisole induce significant increase in total protein and globulin in sheep. Our results were reinforced also by [26] they found that serum total protein and globulin significantly increased in rabbits treated with levamisol. The above mentioned results were also supported by the previous studies [14] mentioned that rats treated with levamisole show significant increase in total protein and globulin and such findings may be due to the ability the levamisole to enhance both cellular and humeral immune responses.

The results of our work, showed significant increase in serum AST, ALT, alkaline phosphatase, urea, creatinine and total bilirubin levels in healthy rabbit injected with closantel. On the other hand, levamisole induced significant increase in serum AST, ALT, alkaline urea and insignificant phosphatase, decrease in creatinine but total bilirubin was insignificantly decreased in pregnant rabbits. These results were supported by [31] he stated that other salicylanilide derivative (rafoxanide) induce significant elevation in AST, ALT and alkaline phosphatase. The elevation in liver enzymes in our study might be due to hepatotoxic effect of closantel in rabbits [41]. In keeping with these lines, [2] found that closantel induced significant elevation in AST, ALT, alkaline phosphatase and bilirubin in rabbits. Our findings agreed with those recorded by [12] they found that closantel intoxication in dogs caused an elevation of hepatic enzymes together with increase of bilirubin in blood and urine. Increase in AST, ALT, alkaline phosphatase, urea and insignificant decrease in creatinine total bilirubin post levamisol and

treatment are in accordance with the finding of [13] they stated that levamisole induced a significant increase in the activities of AST, ALT, alkaline phosphatase and urea while creatinine insignificant changes.

In our study, closantel induced hydropic degeneration and fatty changes in liver at 15th days post closantel injection. Renal showed necrotic epithelia. hyperplasia of the glomerular tuft with epithelial and hyaline casts in the lumen of renal tubules. The hepatic tissue showed hyperplasia of the bile duct at 15th day post levamisole injection. The area was infiltrated portal eosinophils, round cells infiltration were seen between the renal tubules and around the blood vessels at 15th day post treatment. The liver appears nearly normal at 28th day post treatment. In some cases closantil induced severe hydropic degeneration in hepatic cells fig. (5 and 6) and thickening of hepatic capsule. Changes in both liver and kidney in the rabbits treated with closantel in this study may be attributed to a direct cytotoxic effect of closantel or its metabolites during its execration through the kidney and detoxicafication in the liver, [2]. Levamisol induce hyperplasia of the bile duct, portal area infiltrated with eosinophils, round cells infiltration between the renal tubules at 15 day post treatment. These results were agreement with [13]. They stated that levamisole induce small focal necrotic areas in the liver beside necrosis and degenerative changes in epithelial lining of the renal tubules.

The observed results allowed the conclusion that, closantel and levamisole produced adverse effect on haematological liver and kidney function but not elicited any effects on feti.

5. REFERENCES

- 1. Ahmed, horia, E. 2008. Effect of cefoperazone on foetal development in rats. Ph.D. Thesis, Fac. Vet. Med., Zagazig University.
- 2. Ala-El-Deen, Mona, M., Samira, S., Emara, A., Selim, S. and Mansour, U. 2002. Effect of closantel on some blood parameters, histopathological changes and fetal development in pregnant female rabbits. *Vet. Med. J.* **50**: 117-131
- 3. Bancroft, J., Steven, A. and Turner, D. 1990. Theory and Practice of Histological Techniques 3rd Ed. Churchill Livingstone, Edinburgh, London, Melbourne and New York.
- 4. Brown, C., Allen, N. and Ward, J. 1984. Effect of levamisole treatment on lambing performanc of winter housed ewes. *Vet Rec.* **21**: 58-59.
- Chevis, R. 1977. Investigation of the effect of Closantel on pregnancy in sheep. Unpublished trial Report, from Ethnor LTD. The Oaks, Australia. Submitted to WHO by Jansen Pharmaceutica.
- 6. Coalombe, J. and Faurean, L. 1963. A new simple semimicro method for calorimetric determination of urea. *Clin. Chem.* 9: 102-108.
- 7. Coles, E. (1986): Veterinary Clinical Pathology.4th Ed. W.B. Saunders Comp. Philadelphia, London.
- 8. Crooks, S., Traynor, I. and Thompson, C. 2003. Detection of levamisole residues in bovine liver and milk by immunobiosensor. *Anal. Chem. Acta.* **483**: 181-188.
- 9. Diego, R., María, S. and Cecilia, B. 2004. Molecular basis of the differential sensitivity of nematode and mammalian muscle to the anthelmintic agent levamisole. *Biol. Chem.* **79**: 72-81.
- 10. Doumas, B., Certor, R., Peers, T. and Schafler, R. 1981. A candidate reference method for determination of total protein in serum. *Clin. Chem.* 27: 1642 164.
- 11. Drupt, F. 1974. Colorimetric method for determination of albumin. *Pharm. Bio.* **9**: 777.
- 12. Entce, K., Grauwsk, M., Clerex, C. and Hemotewx, M. 1995. Closantel

- intoxication in dog. *Vet. Hum. Toxicol.*, **37**: 234-236.
- 13. Gammaz, H., Abdella, O. and El-Miniawy, H. 1993. Prelude to the adverse effects of levamisole and niclosamide used concomittantly. *Assiut Vet. Med. J.* 28: 176-185.
- 14. Haleem, H., Abd El-Khalek, M. and Abd El-Rahman, M. 1999. Effect of levamisole in the intact and damaged liver and immune status in rats. *Egypt J. Comp. Clinic. Pathol.* **12**: 11-15.
- Harbison, R., Otuhidewos, J. and Sastry,
 B. 1975. Basic and Therapeutic Aspect of Practical Pharmacology. Raven Press NY. Pp. 107-115.
- Heitzman, R. 1994. Veterinary Drug Residues. 2nd Ed, Blackwell Science. Pp. 75.
- 17. Husdan, H. and Rapoport, A. 1968. Estimation of creatinine. *Clin. Chem.* **14**: 222.
- 18. Hussein, Shahira, H., Abd-El Hamid, S. and Sahlaby, S. 2003. Evaluation of levamisole as antihelmintic in sheep naturaly infested with gastrointestinal nematod. *Egy. J. Ag. Res.* **87**: 415-431.
- 19. Jain, N. 1993. Essentials of Veterinary Hematology. Lea and Febiger, Philadelphia, USA.
- 20. Jendrassik, L. 1938. Colorimetric determination of serum bilirubin. *Bioch*. **2**: 297.
- 21. John, D. 1982. Clinical Laboratory Method for Determination of Alkaline Phosphates. 9th Ed. Pp. 580-581.
- 22. Kazy, Z., Pucho, E. and Czeizl, E. 2005. The possible teratogenic effect of levamisole treatm-ent during pregnancy. *Orv. Hetil.* **146**: 2499-2500.
- 23. Khan, F., Sanyal, P. and Bhagwan, P. 1999. Comparative anthelmintic activity of strategic sustained low level of albendazole and feed pellets compared to single doses of closantel and tetramisol against natural ovin parasitic gastroenteritis. *Trop. Anim. Health.* 31: 193-204.
- 24. Lapteva, L., Veselova, T. and Aksenova, I. 1987. Primary toxicity of a new antitrematode preparation-fascoverm. *Byull-Vsesoy-Instit-Gel'mi-Skryabina*. **48**: 46-49.

- 25. Lauri, J., Moertel, C. and Fleming, T. 1989. Surgical therapy of large bowel carcinoma: evaluation of levamisole and the combination of levamisole and fluorouracil. *J. Clin. Oncol.* **7**: 47-56.
- 26. Mahmoud, Shereen, A. 2007. Clincopathological studies on the effect of levamisole in rabbits. M.V.Sc., Fac. Vet. Med., Zagazig Univ.
- 27. McKellar, Q. and Kinabo, L. 1991. The pharmacology of flukicidal drugs. *Br. Vet. J.* **47**: 30-37.
- 28. Michials, M., Mculdermon, W. and Heykamts, J. 1987. The metabolism and fate of closantel (Flukiver) in sheep and cattle. *Drug Metabolism Reviews* 18: 235-251.
- Mirikin, B. and Singth, S. 1976. Placental transfer of pharmacologically active molecules. In Mirikin, B. L. Perinatal Pharma. and Therap., Academic Press, New York.
- 30. Mohammed, A. and Bogan, J. 1987. The pharmacodynamics of the flukicidal salicylanilides, rafoxanide, closantel and oxyclosanide. *J. Vet. Phar. Ther.* **10**: 127-133.
- 31. Morsy, A.M. 2009. Efficacy of rafoxanide on fascioliasis in buffalo. M.V.Sc. Thesis, Fac. Vet. Med., Zagazig University.
- 32. Petrie, A. and Watson, P. 1999. Statistics for Veterinary and Animal Science 1st Ed., the Blackwell Science LTd, United Kingdom. Pp. 90-99

- 33. Reitman, S. and Frankel, S. 1957. Acolorimetric method for determination of serum glutamic oxalacetic and glutamic pyruvic transaminase. *Am. J. Clin. Pathol.* 28: 56-63.
- 34. Renoux, G. 1980. The general immunopharmacology of levamisole. *Drug* **19**: 89-99.
- 35. Risvanl, A. and Aydn, R. 2003. Effects of levamisole on pregnancy rate, fetal size, and lactation period in rats. *Saglk-Bilimleri-Dergisi,-Firat-Universitesi-Veteriner.* **17**: 45-47.
- 36. Spreafico, F. 1980. Use of levamisole in cancer patients. *Drugs* **19**:105-116.
- 37. Trailovic, S. and Zivanov, D. 1991. Toxicity of closantel after the use of high doses for prolonged period in rabbits. *Veterinarski-Glasnik*. **45**: 841-844
- 38. Wilson, J. 1973. Environment and Birth Defects. Academic Press, New York.
- 39. Van Cauteren, R., Vandenberghe, J., Herin, V. and Rarsbom, R. 1985. Toxicological properties of closantel. *Drug Chem. Toxicol.* **8**: 101-123.
- 40. Vojtic, I. 1997. Immunomodulation of puerperal disorders in dairy cows with levamisole. *raxis-Veterinaria-Zagreb* **45**: 245-250.
- 41. Youssef, Amany. E. 2002. Effect of the antiparasitic drug closantel on fetal development and some biochemical parameters in rabbits. *Vet. Med. J. Giza* **50**: 299-310.

التأثيرات البيوكيميائية والباثولوجية للكلوزنتيل واليفاميزول في اناث الأرانب 2 شاديه احمد رفعت 1 ، عزت أبو الفتوح حمودة، اميمه محمود سامى 2 ، وريهام محمد رضا الرشيدى 2 أقسام والكيمياء الباثولوجيا 1 والباثولوجيا الاكلينيكيه 2 – معهد بحوث صحة الحيوان (فرع الزقازيق)

الملخص العربي

كان الغرض من هذا البحث هو دراسة تأثير الكلوزنتيل والليفاميزول على التطور الجنيني و كذلك تأثيراتهم على صورة الدم, بعض الوظائف البيوكيميائية والباثولوجية في ايناث الأرانب أثناء الحمل في هذه الدراسة تم استخدام 15 أنثى و15 ذكور. الارانب سليمة ظاهريا واكلينكيا في مزرعة خاصة بمحافظة الشرقية. تم تقسيم الارانب إلى ثلاث مجموعات متساوية كلاً منها تضم 5 اناث و 5 ذكور الأولى مجموعه ضابطة .اما المجموعه الثانية و الثالثة تم حقن الاناث تحت الجلد بالجرعة العلاجية من الكلوزنتيل واليفاميزول(في اليوم الأول للحمل).في اليوم 15, 28 من الحمل تم أخذ عينتين دم من كل ارنب من الوريد الموجود في الإذن العينه الأولى على EDTA وذلك لدراسة التأثير على صورة الدم والأخرى لفصل المصل وذلك لدراسة التأثير على بعض الوظائف البيوكيميائية. وفي اليوم الثامن والعشرين من الحمل تم أجراء العملية القيصرية لكل ارانب المجموعات السابقة واستخرجت الأجنة وتم عد ووزن الأجنة وقياس طولها وتم اخذ عينات من الكبد والكلى في الفورما لين (وذلك لدراسة التأثير الهستوباتولوجي لتلك الادوية). وتشير النتائج ان اجنه الارانب المحقونة بالكلوزنتيل والليفاميزول وجود بها نقص غير معنوى في طول وعدد ووزن الأجنة كما تشير النتائج أن عقارى الكلوزنتيل والليفاميزول أديا إلى حدوث نقص غير معنوي في عدد كرات الدم الحمراء, تركيز الهيموجلوبين ، حجم خلايا الدم المرصوصة بعد 15 و 28 يوم من حقن العقارين . بينما احدث الكلوزنتيل زياده معنويه في عدد كرات الدم البيضاء,الخلايا الحامضية والخلايا الملتهمة الكبيرة مع وجود نقص غير معنوى في الخلايا المتعادله والخلايا الليمفاويه ولكن اليفاميزول بالجرعة العلاجية أحدث زيادة معنوية في عدد كرات الدم البيضاء, الخلايا المتعادلة,الخلايا الليمفاويه مع وجود نقص غير معنوى في,الخلايا الحامضيه,الخلايا القاعديه و الملتهمة الكبيرة عند نفس المدد السابقه. وبدراسة التغيرات البيوكيميائية التي حدثت نتيجة استخدم الجرعة العلاجية من الكلوزنتيل في الأرانب الحوامل وجدت زياده معنويه في انزيمي الترانس امينز (AST-ALT) الفوسفاتيز القاعدي,الصفراء,اليوريا ,الكريانتين ونقص معنوي في البروتين الكلي والزلال ونقص غير معنوي في الجلوبيلوين بعد 15 و28 يوم من الحقن . اليفاميزول بالجرعة العلاجية أحدث زيادة معنوية في زياده معنويه في انزيمي الترانس امينز (AST-ALT) الفوسفاتيز القاعدي,اليوريا, البروتين الكلي, الزلال والجلوبيلوين مصحوبا بنقص غير معنوى في الصفراء وزياده غير معنويه في الكرياتينين بعد 15 و 28 من الحقن.وبدراسة التغيرات الباثولوجية وجد أن هناك تاثير لعقار الكلوزنتيل على الكبد والكليتين وكانت التغيرات في الكبد عبارة عن استحالات وارتشاحات للخلايا الحمضية مع تتكرز واستحالات بخلايا الكليتين بعد 15 من الحقن. مما سبق فاننا توصى باستخدام الكلوزنتيل,اليفاميزول بالجرعات العلاجية للقضاء على الديدان الداخلية في الحيوانات الحوامل لأنة امن على الأجنة ولا يسبب اى تشوهات في الأجنة

(مجلة بنها للعلوم الطبية البيطرية. عدد 22 (2)، ديسمبر 2011: 136-144)